

Restorative

## Houghton Lake Facts

- 22,044 acres in area
- 30.5 miles of shoreline
- Mean depth of 8.5 ft.
- Maximum depth of 21 ft.
- Elevation of 1,138 ft.
- Retention Time of 1.71 yrs.
- Lake level created in 1926



# Houghton Lake Depth Contours



# Houghton Lake Bottom Hardness



# Houghton Lake Immediate Watershed

### Houghton Lake Watershed



- 107,728.75 acres
- Watershed is 5.4X
  lake size = large
  watershed =
  moderate
  opportunities for
  pollution
- Largely forested

### **USDA-NRCS**

### **General Characteristics**

### Soil Series

Tawas and Lupton Mucks 0-1% slopes Grayling sand 0-6% slopes Graycalm-Klacking Sands 0-6% slopes Graycalm Sand 0-6% slopes Histosols and Aquents, ponded Wakeley Muck

Croswell-Au Gres sands 0-3%

slopes

Au Gres-Kinross-Croswell complex,

0-6% slopes

Organic, deep, very poorly drained, high runoff potential Deep, excessively drained, low runoff potential Deep, somewhat excessively drained, low runoff potential Deep, somewhat excessively drained, low runoff potential Organic (peat), poorly drained, high runoff potential Deep, poorly drained, high runoff potential Deep, moderately drained, moderate runoff potential Very deep, moderate to poorly drained, moderate to

high runoff potential

## Houghton Lake Soils Map



Conservation Service

National Geoperative Soil Survey

Page 1 of b

# Houghton Lake Deep Basin WQ Sampling Sites



# Houghton Lake Tributary WQ Sampling Sites





Figure 9a. Northwest canals



Figure 9b. Northwest canals



Figure Oc. Long Doint canale



Figuro Od Wort Canal

| Lake Trophic | Total Phosphorus | Chlorophyll-a | Secchi       |
|--------------|------------------|---------------|--------------|
| Status       | (µg L⁻¹)         | (µg L⁻¹)      | Transparency |
|              |                  |               | (feet)       |
| Oligotrophic | < 10.0           | < 2.2         | > 15.0       |
| Mesotrophic  | 10.0 – 20.0      | 2.2 - 6.0     | 7.5 – 15.0   |
| Eutrophic    | > 20.0           | > 6.0         | < 7.5        |

| Algae Sample<br>Location | Dominant Algal Genera                                         |
|--------------------------|---------------------------------------------------------------|
| DB #1                    | Chlorella sp., Scenedesmus sp., Spirogyra sp., Mougeotia sp.  |
| DB #2                    | Chlorella sp., Scenedesmus sp., Spirogyra sp., Closterium sp. |
| DB #3                    | Chlorella sp., Pediastrum sp., Spirogyra sp., Mougeotia sp.   |
| DB #4                    | Chlorella sp., Scenedesmus sp., Zygnema sp., Mougeotia sp.    |
| DB #5                    | Chlorella sp., Pediastrum sp., Spirogyra sp., Mougeotia sp.   |
| DB #6                    | Chlorella sp., Scenedesmus sp., Spirogyra sp., Closterium sp. |



### Trend in Mean pH in Houghton Lake





### **Trend in Mean DO in Houghton Lake**





#### Figure 16 Mean secchi transnarency with time in Houghton Lake (2010-2016).

| Trib Name        | Water<br>Temp<br>≌F | DO<br>mg L <sup>-1</sup> | рН<br>S.U. | Cond.<br>µS cm <sup>-1</sup> | TDS<br>mg L <sup>-1</sup> | TP<br>mg L <sup>-1</sup> | Ortho-P<br>mg L <sup>-1</sup> | TSS<br>mg<br>L <sup>-1</sup> | Chl-a<br>µg L⁻¹ |
|------------------|---------------------|--------------------------|------------|------------------------------|---------------------------|--------------------------|-------------------------------|------------------------------|-----------------|
| Flats-N          | 82.2                | 6.5                      | 8.1        | 210                          | 120                       | <0.010                   | 0.013                         | <10                          | 4.0             |
| Flats-S          | 82.4                | 6.8                      | 8.1        | 243                          | 108                       | 0.021                    | 0.011                         | <10                          | 4.0             |
| Sucker Creek     | 81.5                | 1.5*                     | 7.5        | 499*                         | 152*                      | 0.300*                   | 0.110*                        | 140*                         | 11.0*           |
| Denton Creek     | 81.5                | 7.0                      | 8.0        | 238                          | 125                       | 0.013                    | <0.010                        | <10                          | 4.0             |
| Bacus Creek      | 81.5                | 7.0                      | 8.0        | 221                          | 97                        | <0.010                   | <0.010                        | <10                          | 3.0             |
| Spring Brook     | 81.0                | 7.2                      | 8.1        | 252                          | 130                       | 0.049*                   | 0.032*                        | <10                          | 5.0             |
| Knappen<br>Creek | 80.0                | 6.9                      | 8.0        | 366*                         | 176*                      | 0.015                    | 0.013                         | <10                          | 4.0             |

# Houghton Lake GPS Sampling Point Map

Houghton Lake Survey Grid Points



# Houghton Lake Invasive Species



3



Figure 7. Curly-leaf Pondweed (©RLS, 2006).



Figure 10. Phragmites. (©RLS, 2006).



Figure 8. Starry Stonewort (USGS photo).



Figure 9. Purple Loosestrife (©RLS, 2006).

### Hybrid Watermilfoil (Eurasian Watermilfoil + Native Watermilfoil)





# Grows thicker, wider, faster than EWM and is VERY TOLERANT to herbicides!



### **EWM Overgrowth in Other Lakes:**











## Houghton Lake HWM Treatment Areas

#### Houghton Lake

Roscommon County, MI Large Eurasian Watermilfoil Polygon Acreages

#### Legend

🯉 EVVM C&D Level Area ~283 acres

Roscommon

Houghton Lake

Houghton Lake

W Lake City Rd

3 mi

### Houghton Lake: North Bay

200

...

300

S.C

N

Roscommon County, MI Eurasian Watermilfoil Density Map

#### Legend

- C Eurasian Watermilfoil "A" Density
- Eurasian Watermilfoil "B" Density
- C Eurasian Watermilfoil "C" Density
- 🥖 Eurasian Watermilfoil "D" Density



## Houghton Lake Starry Stonewort Treatment Areas

Roscommon

![](_page_27_Picture_1.jpeg)

Roscommon County, MI Starry Stonewort Treatment Map

#### Legend

Starry Stonewort ~450 acres

127

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_7.jpeg)

101 acres Houghton Lake

![](_page_27_Picture_9.jpeg)

137 acre

Denton Township

Google earth

W-L-ak-e-City-R-d-

3 mi

### **Houghton Lake**

Roscommon County, MI Starry Stonewort Locations and Density

#### Legend

common

ighton Lake

Starry Stonewort "A" Level
 Starry Stonewort "B" Level
 Starry Stonewort "D" Level
 Starry Stonewort "C" Level

Roscommo

Google earth

W Lake City Rd 55

127

1 1 18

Hought

### Houghton Lake Roscommon County, Mi Emergent Invasive Locations Legend Purple Loosestrife Phragmites

Purple Loosestrife

Houghton Lake

Antipant LA.

Houghton Lake

North Bay Houghton Lake

East Ba

O Phragmites

P 14810100-1282

W West-Branch Rd

2 mi

18

W Lake Git

127

Google earth

| Year | # Walleye Stocked | Average Walleye Length (inches) |
|------|-------------------|---------------------------------|
| 1979 | 68,936            |                                 |
| 1980 | 106,717           |                                 |
| 1981 | 178,757           |                                 |
| 1982 | 26,699            |                                 |
| 1983 | 39,400            |                                 |
| 1984 | 24,739            | 3.5                             |
| 1985 | 70,663            | 2.2                             |
| 1986 | 62,450            | 2.5                             |
| 1986 | 45,500            | 2.3                             |
| 1987 | 17,000            | 3.6                             |
| 1988 | 75,200            | 2.6                             |
| 1989 | 67,150            | 3.4                             |
| 1990 | 106,049           | 1.8                             |
| 1990 | 19,420            | 4.4                             |
| 1991 | 101,050           | 3.5                             |
| 1993 | 158,282           | 1.6                             |
| 1994 | 10,000            | 2.6                             |
| 1995 | 7,150             | 4.4                             |
| 1999 | 152,346           | 1.9                             |
| 2001 | 319,494           | 1.5                             |
| 2005 | 212,568           | 1.5                             |
| 2011 | 75,063            | 1.4                             |

# Houghton Lake Aquatic Vegetation Biovolume

![](_page_31_Figure_1.jpeg)

| Native Aquatic Plant<br>Species Name | Aquatic Plant<br>Common Name | % Cover | Aquatic Plant<br>Growth Habit |         |
|--------------------------------------|------------------------------|---------|-------------------------------|---------|
| Chara vulgaris                       | Muskgrass                    | 32.4    | Submersed, Rooted             |         |
| Potamogeton pectinatus               | Thin-leaf Pondweed           | 1.3     | Submersed, Rooted             |         |
| Potamogeton amplifolius              | Large-leaf Pondweed          | 1.0     | Submersed, Rooted             |         |
| Potamogeton zosteriformis            | Flat-stem Pondweed           | 2.8     | Submersed, Rooted             | 33      |
| Potamogeton gramineus                | Variable-leaf Pondweed       | 0.8     | Submersed, Rooted             | Species |
| Potamogeton robbinsii                | Fern-leaf Pondweed           | 0.5     | Submersed, Rooted             |         |
| Potamogeton natans                   | Floating-leaf Pondweed       | 0.2     | Submersed, Rooted             |         |
| Potamogeton praelongus               | White-stem Pondweed          | 20.5    | Submersed, Rooted             |         |
| Potamogeton richardsonii             | Clasping-leaf Pondweed       | 1.5     | Submersed, Rooted             |         |
| Ranunculus sp.                       | Buttercup                    | 0.1     | Submersed, Rooted             |         |
| Megalodonta sp.                      | Water Marigold               | 0.1     | Submersed, Rooted             |         |
| Potamogeton pusillus                 | Small-leaf Pondweed          | 0.01    | Submersed, Rooted             |         |
| Potamogeton illinoensis              | Illinois Pondweed            | 3.1     | Submersed, Rooted             |         |
| Myriophyllum sibiricum               | Northern Watermilfoil        | 0.03    | Submersed, Rooted             |         |
| Myriophyllum verticillatum           | Whorled Watermilfoil         | 0.01    | Submersed, Rooted             |         |
| Zosterella dubia                     | Water star grass             | 0.03    | Submersed, Rooted             |         |
| Drepanocladus revolvens              | Water scorpion moss          | 0.02    | Submersed, Non-Rooted         |         |
| Vallisneria americana                | Wild Celery                  | 2.5     | Submersed, Rooted             |         |
| Elodea canadensis                    | Common Waterweed             | 1.3     | Submersed, Rooted             |         |
| Ceratophyllum demersum               | Coontail                     | 0.4     | Submersed, Non-Rooted         |         |
| Utricularia vulgaris                 | Bladderwort                  | 1.4     | Submersed, Non-Rooted         |         |
| Najas guadalupensis                  | Southern Naiad               | 12.4    | Submersed, Rooted             |         |
| Najas flexilis                       | Slender Naiad                | 4.9     | Submersed, Rooted             |         |
| Nymphaea odorata                     | White Waterlily              | 0.8     | Floating-Leaved, Rooted       |         |
| Nuphar variegata                     | Yellow Waterlily             | 1.1     | Floating-Leaved, Rooted       |         |
| Lemna minor                          | Duckweed                     | 0.02    | Floating-leaved, Non-Root     | ed      |

### Houghton Lake Wild Rice

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

## Microcystis in Canals

![](_page_34_Picture_1.jpeg)

## **Chemical Herbicides**

### **Benefits**

- Fast-acting
- Relatively low-cost
- Some are "broadspectrum"
- Easy to obtain MDEQ permits

![](_page_35_Picture_6.jpeg)

### Limitations

- Long-term impacts unknown
- Have to re-apply within and among seasons for sustained control
- Hybrid species now rapidly building resistance to many existing herbicides
- Some are costly

## **Mechanical Harvesting**

### **Benefits of Harvesting**

- Removes some plant debris and associated organic nutrient
- Can reduce need for herbicides but is generalist
- Should not be used on species that fragment such as milfoil
- Immediate result

### **Limitations of Harvesting**

- Can increase biomass of fragment-producers
- Can create floating debris
- May need to be repeated in single season due to re-growth

![](_page_36_Picture_10.jpeg)

## DASH Boat Weed Removal

- Removes some plant debris and associated organic nutrient
- Can reduce need for herbicides
- Can be used on milfoil and species that fragment
- Requires MDEQ/USACE permit
- Cost ~\$1K-\$3k per acre
- Can be permanent

![](_page_37_Picture_7.jpeg)

![](_page_37_Picture_8.jpeg)

### nthic Barriers and Weed Rollers

- Prevents plants from germinating; non-chemical
- Costly and localized control
- Great option for beach areas

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

## **Boat Wash Station**

- Cooperative effort between HLA and HLIB
- Reduces transfer of invasive species into Houghton Lake
- Will require education of locals and visitors
- Sets a good precedent for community involvement in lake management

![](_page_39_Picture_5.jpeg)

![](_page_39_Picture_6.jpeg)

![](_page_39_Picture_7.jpeg)

## logical Control: Galerucella sp.

### Benefits

- Non-chemical agent
- Effective on stands of Purple Loosestrife
- Self-propagating
- Fast turn over rate on life cycle within a given season
- Stocking rate declines with time
- Cost effective

### Limitations

- Uncertainty exists on stocking density needs
- Stocking density needs may be highly sitespecific

![](_page_40_Picture_11.jpeg)

## Laminar Flow Aeration

### Benefits

- Non-chemical agent
- Sustainable
- Reduces weeds, mucks, improves sediment, restores lake
- Addresses dissolved oxygen depletion issue on lake
- Good for fishery/ecosystem health
- Supported by academic peer reviewed-research

### Limitations

- Initially costly
- MDEQ testing requirements
- Requires electrical supply for

### compressors/easement

![](_page_41_Figure_13.jpeg)

## outary Nutrient/Sediment Filters

- Non-chemical agent
- Sustainable
- Reduces nutrients and sediment loads to the lake which reduces algae/plants
- Good for fishery/ecosystem health
- Reasonable Cost (ranged \$3K-\$10K per filter which lasts around 4-5 yrs..

![](_page_42_Picture_6.jpeg)

| Lake Management Activity                           | Primary Goal                                                                                   | Secondary Goal                                                            | Best Locations to Use                                            |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|
| Aquatic herbicide treatment of hybrid milfoil      | To reduce areas where the milfoil is dense                                                     | To prevent dense areas from spreading in the lake                         | Main Lake (only dense areas of growth)                           |
| Aquatic Herbicide treatment of Starry<br>Stonewort | To reduce areas where it is dense                                                              | To prevent plant from<br>carpeting lake bottom                            | Main Lake; Canals if needed for<br>dense growth                  |
| Suction Harvesting                                 | To remove selective areas of<br>dense invasive plants in<br>Middle Grounds/North<br>Bay/Canals | To reduce dependency on chemical herbicides                               | Main Lake (small invasive polygons<br>in Middle Grounds), Canals |
| Benthic Barriers/Weed Rollers                      | To prevent germination of<br>nuisance weeds in beach<br>areas or canals                        | To reduce dependency on chemicals in nearshore areas                      | Beach areas, Canals                                              |
| Wild Rice Cultivation                              | To allow for new growth of<br>Wild Rice                                                        | To increase habitat for<br>Waterfowl                                      | Middle Grounds, North Bay                                        |
| Laminar Flow Aeration/Bioaugmentation              | To reduce odorous muck in<br>canals and aerate sediments                                       | To holistically manage the muck and weeds in the canals                   | Canals (especially P1-PM canals and MKP-5 canal)                 |
| Tributary Nutrient Barriers                        | To reduce nutrients and<br>solids entering Houghton<br>Lake                                    | To reduce weed growth<br>associated with incoming<br>nutrients            | Tributaries (especially Sucker<br>Creek and Spring Brook)        |
| Lake Vegetation Surveys/Scans                      | To determine % cover by invasives and use as data tool                                         | To compare year to year reductions in nuisance vegetation areas           | Main Lake, Canals                                                |
| Boat Washing Station                               | To clean boats of invasives before entering the lake                                           | To educate boaters on the<br>proper cleaning of boats and<br>on invasives | South Bay; more if affordable in future and if pilot successful  |
| Water Quality/Sediment Monitoring                  | To troubleshoot areas that have poor water quality                                             | To compare trend in water quality parameters with time                    | Main Lake, Canals, Tributaries                                   |
| Macroinvertebrate Sampling                         | To determine baseline populations                                                              | To determine if herbicides<br>have an impact on<br>populations            | Areas proposed to be treated in<br>Main Lake                     |

| Proposed Houghton Lake Management<br>Improvement Item                                                                         | Estimated 2017 Cost    | Estimated 2018<br>Cost | Estimated 2019-<br>2021 Cost |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------------|
| Herbicides for Hybrid Watermilfoil and Starry<br>Stonewort and/or DASH Boat removal of<br>invasives, Permit Fees <sup>1</sup> | \$400,000              | \$350,000              | \$250,000                    |
| Professional Limnologist Services (limnologist surveys, sampling, contractor oversight, education) <sup>2</sup>               | \$65,000               | \$65,000               | \$65,000                     |
| Attorney Fees                                                                                                                 | \$5,000                | \$5,000                | \$5,000                      |
| Assessment Appeals                                                                                                            | \$3,000                | \$3,000                | \$3,000                      |
| Canal Aeration Systems                                                                                                        | \$70,000               | \$50,000               | \$50,000                     |
| Tributary Filter Buffers                                                                                                      | \$10,000               | \$0                    | \$0                          |
| Boat Washing Station                                                                                                          | \$140,000              | \$20,000               | \$20,000                     |
| Audit, Bond, Insurance                                                                                                        | \$1,400                | \$1,400                | \$1,400                      |
| Professional Memberships                                                                                                      | \$100                  | \$100                  | \$100                        |
| Mailings, Publication                                                                                                         | \$2,000                | \$0                    | \$2,000                      |
| Contingency (15%) <sup>3</sup><br>TOTAL ANNUAL ESTIMATED COST                                                                 | \$104,475<br>\$800,975 | \$74,175<br>\$568,675  | \$59,475<br>\$455,975        |
| BENEFIT <sup>4</sup>                                                                                                          | \$                     | \$                     | \$                           |

## Questions?

![](_page_45_Picture_1.jpeg)